

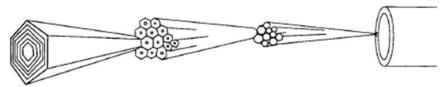
# Cellulose Derivatives in Food Applications Dow Wolff Cellulosics

#### Vicki Deyarmond

vldeyarmond@dow.com



March 2012




- Introduction to Cellulose
- Food Approved Cellulose Derivatives
  - Key Properties
  - Functions
  - Common Applications
- Most Widely Used Cellulose Ethers in Food Industry
  - Methylcellulose (MC)
  - Hydroxypropyl Methylcellose (HPMC)
  - Sodium Carboxymethylcellulose (CMC)



## What is Cellulose?



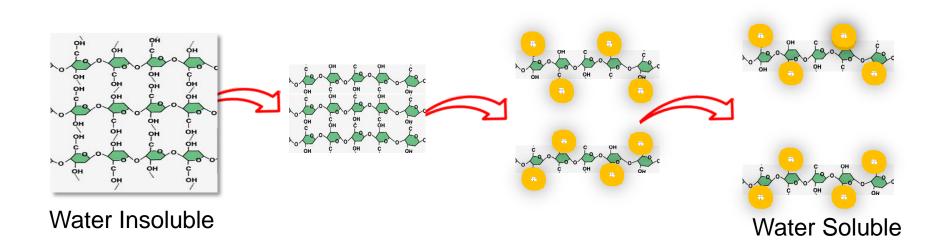


elementary fibre tec

technical fibre b

bast fibre bundle flax stem

Cell walls are made up of cellulose microfibrils (~70%) in a matrix of hemicelluloses (15%), pectins (10-15%), and lignins (2-5%), with a hierarchical structure.


- •Worlds most abundant naturally occurring organic substance
- Cellulose comes from plants, trees and vegetable matter
- As such, it has always been part of the human diet and a source of dietary fiber
- •In its natural state, cellulose is not soluble in water (chains of cellulose are very tightly bound to each other by H-bonding)



## **Cellulose Ethers**







- First cellulosics research work begun in 1920's in Germany
- Applications in foods (USA) starting in late 1940's.
- High purity ( $\geq$  95% water-soluble dietary fiber)
- Non-digestible
- Non-fermentable no gas
  - $\circ$  Related to form of 1,4- $\beta$ -glycosidic bonds between glucose units
- Non-allergenic
- GRAS status



## Agenda



- Introduction to Cellulose
- Food Approved Cellulose Derivatives
  - Key Properties
  - Functions
  - Common Applications
- Most Widely Used Cellulose Ethers in Food Industry
  - Methylcellulose (MC)
  - Hydroxypropyl Methylcellose (HPMC)
  - Sodium Carboxymethylcellulose (CMC)



## **Types of Cellulose Derivatives for Food**

## **Physically Modified Cellulose**

• Microcrystalline Cellulose (MCC)

## Cellulose Ethers

- Hydroxypropylcellulose (HPC)
- Ethylmethylcellulose (MEC)
- Ethylcellulose (EC)
- Methylcellulose (MC)
- Hydroxypropyl Methylcellulose (HPMC)
- Sodium Carboxymethylcellulose (CMC)







#### **Properties**

- Thixotropic
- Shear Thinning Reversible
- Heat Stable
- Nonionic
- Powdered & Dispersible Grades



## **Functions/Applications**

- Opacifying Agent
- Foam Stabilizer
- Anti-caking agent
- Emulsifier
- Freeze Thaw Stability
   Cheese (powdered,shredded)
   Beverages, Confections,
   Salad Dressings, Sauces,
   Whipped Toppings

\*Labeled as Microcrystalline Cellulose or Cellulose Gel



## **Properties**

- Nonionic
- Surface Active
- Insoluble in Hot Water >40 C
- Soluble in Organic Solvents
- Thermoplastic



## **Functions/Applications**

- Foam Stabilizer
- Film Former (Flexible)

Whipped Toppings, Edible Coatings, Confection Glazes, Extruded Foods

\*Labeled as Hydroxypropyl Cellulose or Modified Cellulose

## **Ethylmethyl Cellulose (MEC)**



#### **Properties**

- Nonionic
- pH Stable
- Precipitates From Solution Above 60C – (reversible upon cooling)
- Not widely used



## **Functions/Applications**

- Thickening Agent
- Filler
- Anti-Clumping Agent
- Emulsifier

Non Dairy Creams, Low Calorie Ice Creams, Whipped Toppings, Mousse

\*Labeled as Ethylmethylcellulose, methylethylcellulose or Modified Cellulose

## Ethylcellulose (EC)



### **Properties**

- Nonionic
- Hydrophobic
- Soluble in Organic Solvents
- Thermoplastic



## **Functions/Applications**

- Film Former
- Flavor Fixative
- Limited Food Approval

Flavor Encapsulation, Moisture Barrier Films, Fruit/Vegetable Inks

\*Labeled as Ethylcellulose

### **Properties**

- Reversible Thermal Gelation
- Cold Water Soluble
- pH Stable
- Wide Viscosity Range



## **Functions/Applications**

- Binding
- Boilout Control
- Film Former
- Freeze Thaw Stability

Formed Foods, Fillings, Sauces, Whipped Toppings, Gluten Free Baked Goods

\*Labeled as Methylcellulose, Hydroxypropyl Methylcellulose, Modified Cellulose

## Sodium Carboxymethylcellulose (CMC)



### **Properties**

- Anionic
- pH Sensitive
- Interacts with Proteins
- High Water Holding Capacity

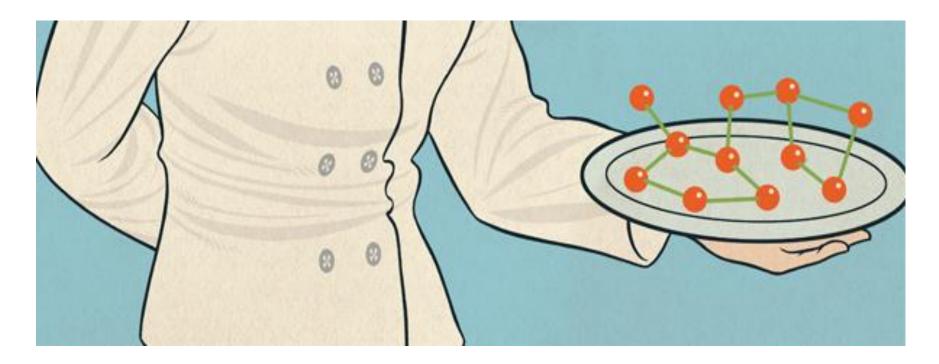


## **Functions/Applications**

- Freeze Thaw Stability
- Protein Protection
- Thickener
- Texture Control

Frozen Foods, Baked Goods, Tortillas, Soups, Sauces, Beverages

\*Labeled as Sodium Carboxymethylcellulose or Cellulose Gum


## Agenda



- Introduction to Cellulose
- Food Approved Cellulose Derivatives
  - Structure Function Relationships
  - Common Applications
- Most Widely Used Cellulose Derivatives in Food Industry
  - Methylcellulose (MC)
  - Hydroxypropyl Methylcellose (HPMC)
  - Sodium Carboxymethylcellulose (CMC)
- Q&A



## Methylcellulose (MC) Hydroxypropyl Methylcellulose (HPMC)



## **MC & HPMC Common Applications**

- •Bakery, Gluten Free
- •Fillings
- Sauces
- Formed/Extruded Foods
- •Salad Dressings/Marinades
- Whipped toppings
- •Batters/Coatings
- Meat/fish preparations
- Beverage Emulsions



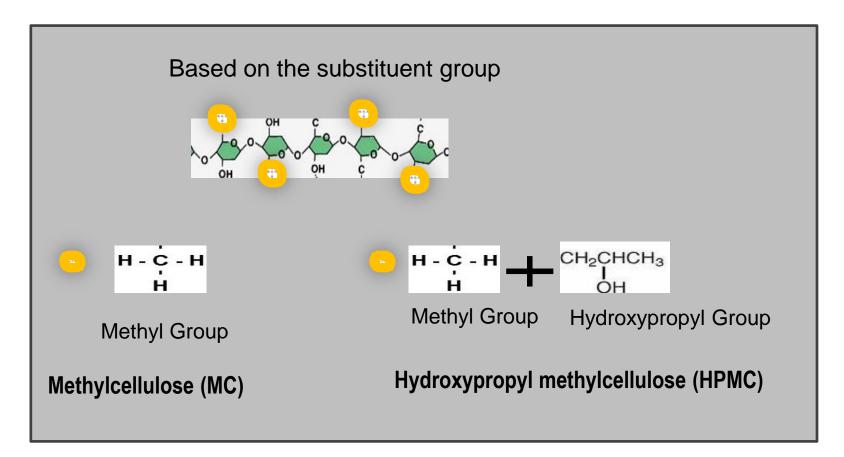


## MC & HPMC – Advantages

- Broad viscosity range from very low to extremely high
   19 250,000 cPs (2 %, Brookfield)
- Always available in high quality (not dependant on harvesting)
- High degree of purity (> 99.5 %)
- Conformity of all standards for food and pharmaceutical applications
- Narrow specifications for all relevant product parameters
- Prepared from wood pulp  $\rightarrow$  GMO free

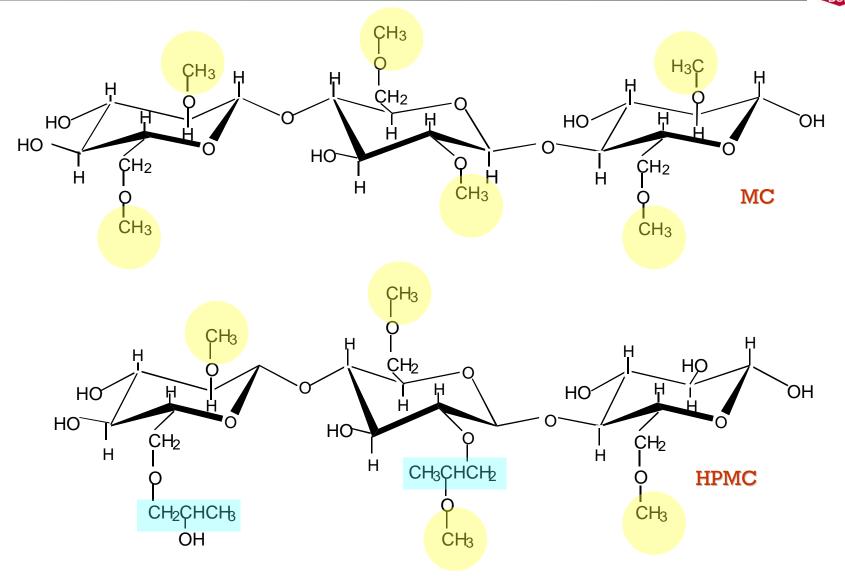





## **MC & HPMC - Key Properties/Functions**



- Reversible Thermal Gelation (varying gel strengths)
- Wide Viscosity Range
- Thickening
- Moisture Control (Cold Water Binding)
- Emulsification, Encapsulation & Film Formation
- Binding
- Air Entrainment & Foam Stability
- Freeze Thaw Stability
- Provides Soluble Fiber




- Methylcellulose (MC)
- Hydroxypropyl methylcellulose (HPMC)



## **MC & HPMC - The Chemistry**





## **Chemistry- Functionality**



Different chemistries have differences in physical properties

- Dissolution temperature
- Gelation Temperature
- Gel Strength
- Surface Activity

Differences are caused by:

- The substituent group (Ratio of methyl/hydroxpropyl groups)
- Relative numbers of the groups (Degree of Substitution: DS)
- Average chain length of the product (Molecular Weight)

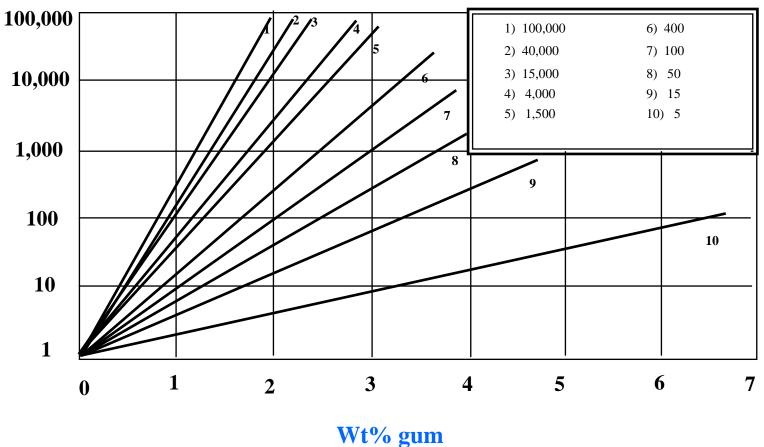
## **MC & HPMC - Different Viscosities**



Thick

~ 50,000 mPa.s

Medium


~ 4000 mPa.s



Thin ~ 50 mPa.s

O dowvolff

#### Viscosity, mPa.s



• A rough rule -- For every 1% increase in concentration you will see a 8x increase in viscosity

## MC & HPMC



#### **Effect of Concentration**

Viscosity build is not linear

## Effect of pH

•Viscosity is stable between pH = 3 and 11

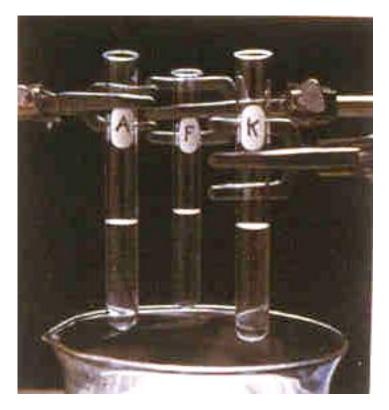
#### **Effect of Temperature**

•<u>MUST</u> reach set hydration temperatures to become fully functional.

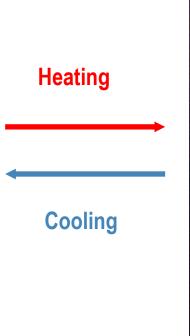
## Effect of Salt and Sugar:

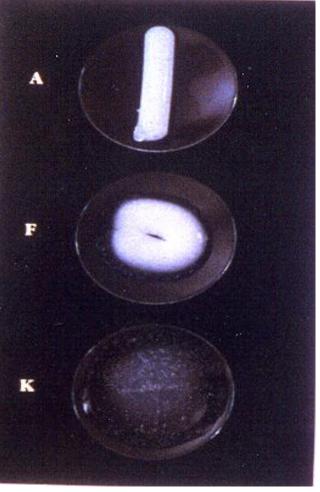
- •May delay hydration and hinder viscosity development
- •May precipitate MC & HPMC out of solution if too much salt or sugar
- May lower gelation temperature




|             | Hydration Range                | <b>Gelation Range</b>        | Gel Strength     |
|-------------|--------------------------------|------------------------------|------------------|
| High Gel MC | <50° F<br>(10° C)              | 100 - 114° F<br>(38 - 44° C) | Very Firm        |
| Conv. MC    | <55° F<br>(13° C)              | 122 - 131°F<br>(38 - 44°C)   | Firm             |
| НРМС        | < 77°F - 85°F<br>(25°C - 30°C) | 143 - 194°F<br>(62°C - 90°C) | Semi-Firm - Soft |




# REVERSIBLE THERMAL GELATION

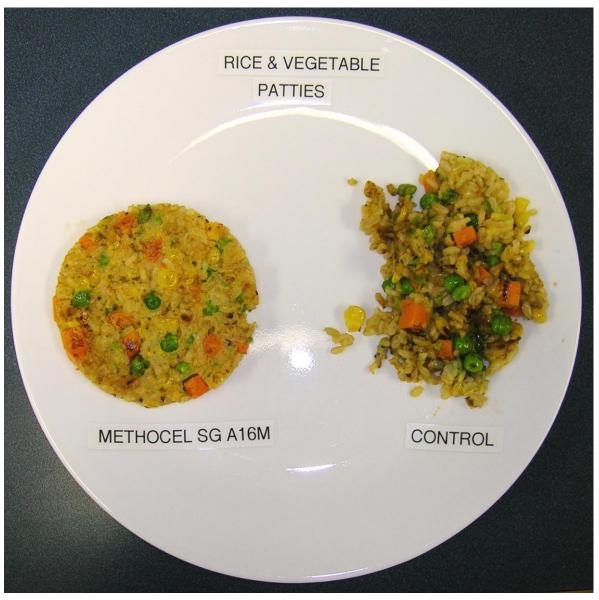

## **MC & HPMC Reversible Thermal Gelation**





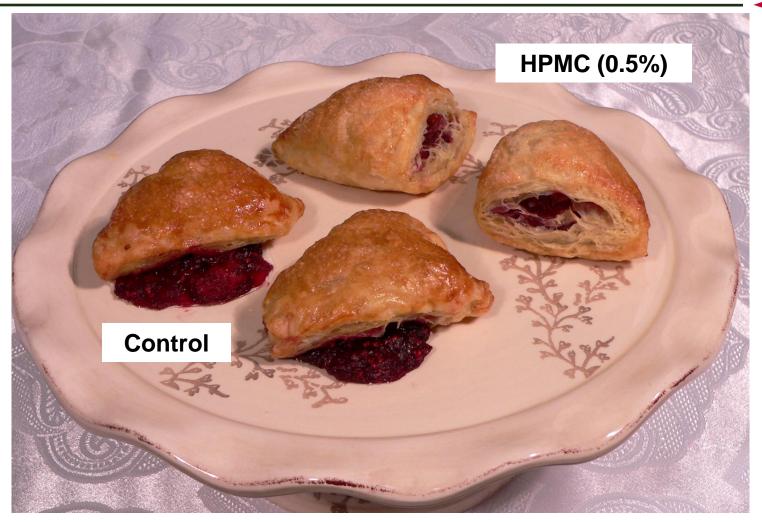
2% MC & HPMC Solutions






Gels obtained by heating 2% MC and HPMC Solutions




- Controls moisture movement
- Retains shape at high temperatures (Boil out control)
- Reduces oil uptake
- Improves coating adhesion (along with film formation)
- Works alone (no other additives necessary)

# **MC & HPMC - Thermal Gelation - Binding/Shape Retention**



#### **MC & HPMC – Thermal Gelation – Boil Out Control**





\*Note: maximum sugar content must be less than 50%.

#### MC & HPMC – Thermal Gelation – Boil Out Control



#### 0.4% MC-vs- 0.15% Xanthan, 0.15% Guar, and starch control



#### **Before Baking**

#### MC & HPMC – Thermal Gelation – Boil Out Control



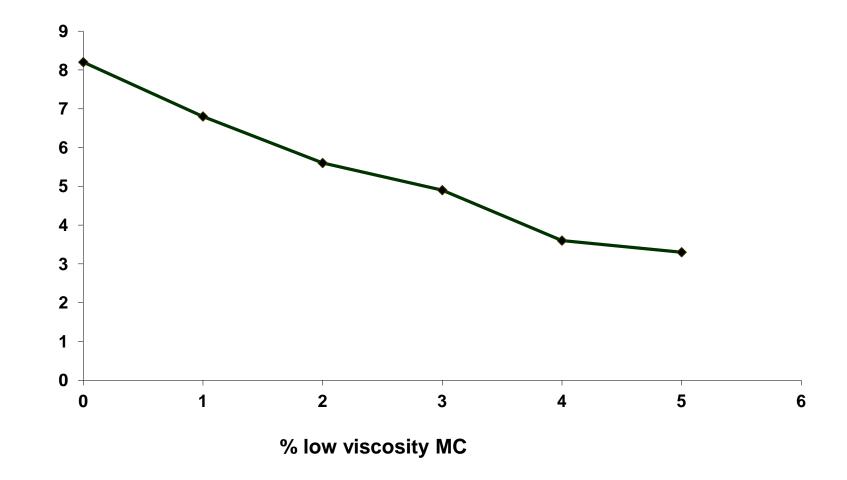


#### **After Baking**

### In French Fry Coatings:

Most important property is gel strength  $\rightarrow$  gel maintains its integrity during frying

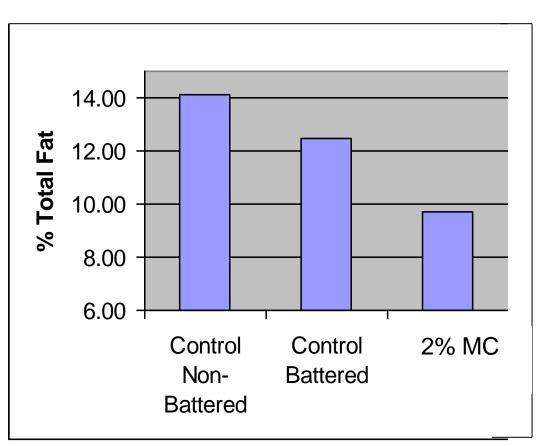
- MC has the highest gel strength of the chemistries
- Least surface active


MC will also gel at the lowest temperature

Ensures film is formed prior to fat being absorbed

MC & HPMC – Thermal Gelation – Fat Reduction




#### Fat Uptake Reduction With Increasing Methylcellulose Solution Strength



MC & HPMC - Thermal Gelation – Fat Reduction

#### **Fat Reduction in French Fry Batters**

- Achieves ~30% reduction in fat
- Will enable a "*Reduced Fat*" claim in retail markets
- Note that the batter alone does provide some barrier function~11%





## **Cinnamon Buns**



| 1 | AC         |   |  |
|---|------------|---|--|
|   | The second |   |  |
|   | X          | - |  |

| Control 09/26/11 |        |          |  |  |  |
|------------------|--------|----------|--|--|--|
| Ingredient       | Grams  | Weight % |  |  |  |
| Butter           | 100.00 | 38.46    |  |  |  |
| Brown Sugar      | 150.00 | 57.69    |  |  |  |
| Cinnamon         | 10.00  | 3.85     |  |  |  |
| TOTALS           | 260.00 | 100.00   |  |  |  |

| A4M Reverse Emulsion 09/26/11 |        |          |  |  |
|-------------------------------|--------|----------|--|--|
| Ingredient                    | Grams  | Weight % |  |  |
| Butter                        | 50.00  | 19.23    |  |  |
| METHOCEL A4M                  | 2.00   | 0.77     |  |  |
| Hot Water                     | 48.00  | 18.46    |  |  |
| Brown Sugar                   | 150.00 | 57.69    |  |  |
| Cinnamon                      | 10.00  | 3.85     |  |  |
| TOTALS                        | 260.00 | 100.00   |  |  |



Methylcellulose be used to improve the juiciness and mouthfeel of an already lean beef patty (without adding extra fat)

#### **Formulation**

- 88.4% Lean beef (90% fat free)
- 10.0% Cold water (<40F)</li>
- 1.2% Methylcellulose
- o 0.4% Salt

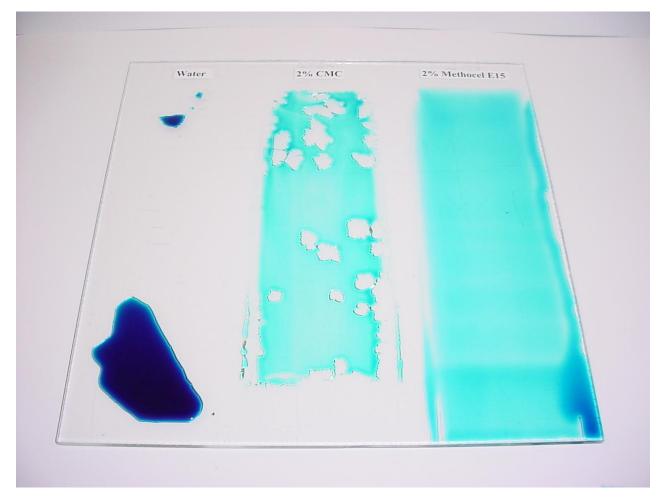


**Total fat**: <u>10% fat (from meat)</u> (11.3g fat per ¼ lb patty) Store bought patty = 20% (22.6g fat per ¼ lb patty) = 50% fat reduction



## FILM FORMATION




| Chemistry   | Surface Tension<br>(Dynes/cm) |           |          |
|-------------|-------------------------------|-----------|----------|
| Water       | 72                            |           |          |
| Xanthan     | 69                            |           |          |
| CMC         | 68                            | Chemistry | Surface  |
| Na Alginate | 62                            |           | Activity |
| PG          | 58                            | MC        | Least    |
| Alginate    |                               | НРМС      | Most     |
| MC          | 53-59                         |           | WOSt     |
| HPMC        | 45-55                         |           |          |

N. Sakar - CRI Report #823965, 1982



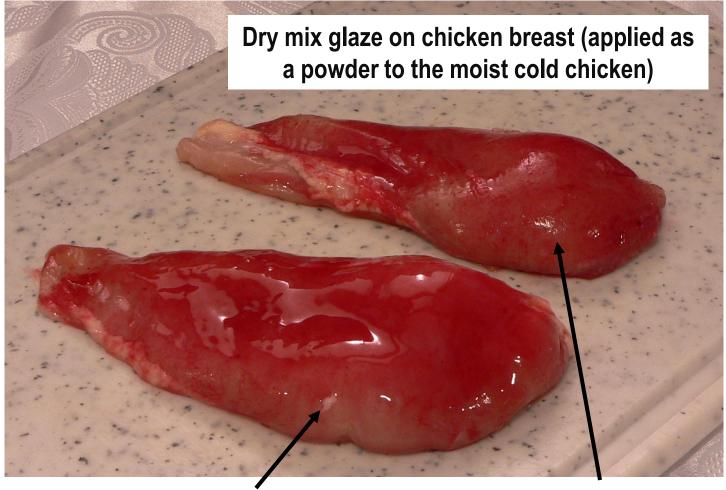
- Improved adhesion of coatings
- Reduced oil pick up (also a function of thermal gelation)
- Increased "hold time" under heat lamp
- Reduced runoff in oven
- Reduced browning





MC & HPMC are very surface active

#### **MC & HPMC – Film Formation**






Tri-colored/tri-flavored film for a coating, as an insert between layers, encapsulation, etc

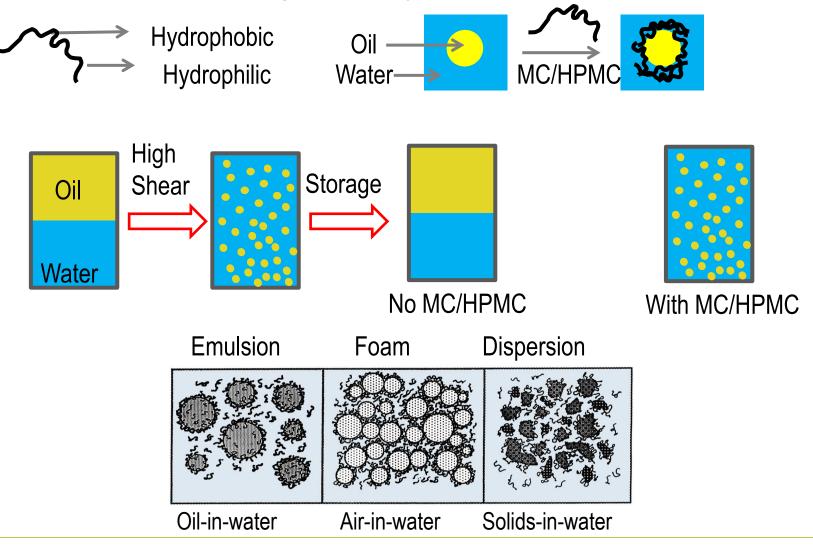
#### **MC & HPMC – Film Formation - Glazes**





with METHOCEL

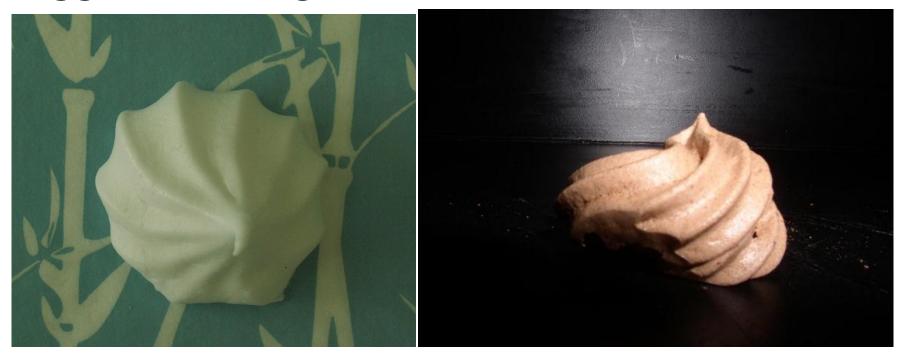
<u>and</u>


#### without METHOCEL



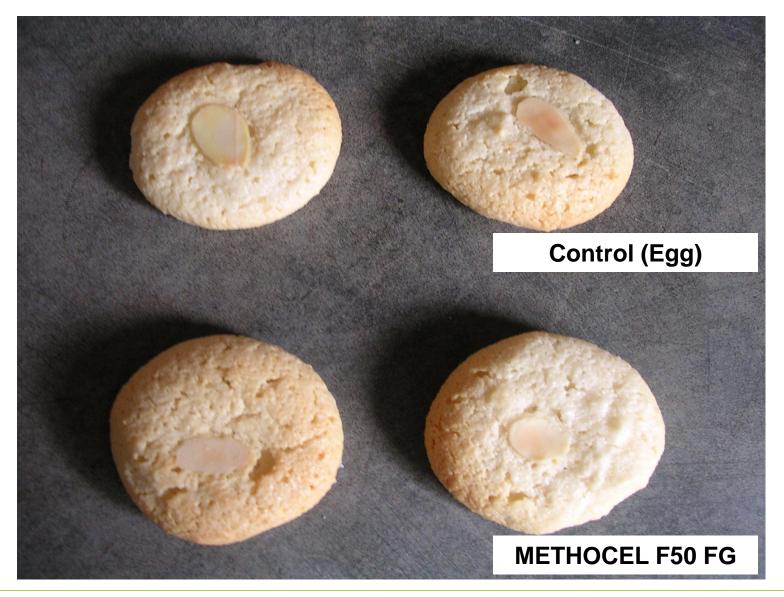
# FOAM STABILITY

### Surface Activity of MC & HPMC


MC & HPMC stabilize emulsions, foams and dispersions by both decreasing the surface tension and increasing the viscosity



dowwo




#### **Eggless Meringue**



#### **MC & HPMC – Foam Stability**







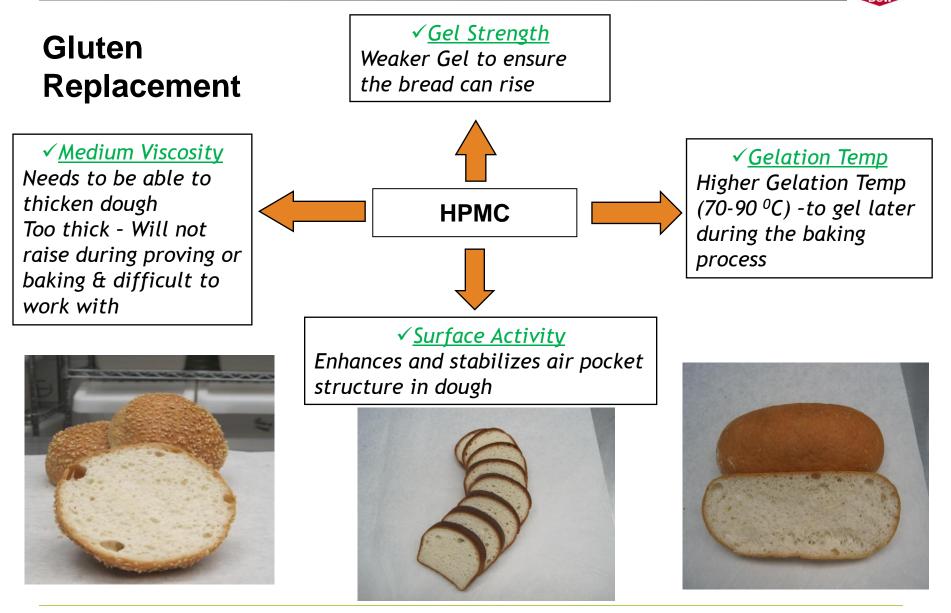
## Moisture Control



- MC & HPMC reabsorb moisture when food cools after heating and retains moisture during shelf storage.
- Cold moisture migration in chilled and frozen storage (ice crystal control)
- Where cold moisture migration control might be used?
  - Baked goods (reduce staling)
  - o Frozen doughs and batters (Cookie, Brownie, Rolls & Bread)
  - Frozen Cakes and Muffins
  - Fillings on dough based substrates

#### Moisture Control and Retention with MC & HPMC








## Use of Multiple Properties

#### MC & HPMC – Using Multiple Properties







#### In Reformed Potato Products:

- Make **mash formable** in the cold (viscosity control)
- Maintain shape when fried and re-cooled (thermal gelation & viscosity)
- Dramatically reduce bursting leading to improved yields and better safety (thermal gelation, moisture management)
- Make mash slippery reducing starch damage during extrusion
- Reduce oil uptake (thermal gelation, film formation)





#### In Predusts:

- Increases Batter Pick-up (Viscosity)
- Manages moisture migration (thermal gelation, film formation)
- Prevents batter blow-offs (thermal gelation, film formation)

#### In Batters:

- Reduced fat uptake (thermal gelation, film formation)
- o Increases "hold time" (thermal gelation, film formation)
- Preserves crispiness in oven reconstituted products (film formation)





# How to Incorporate MC & HPMC in Food Systems



- •Dry Blending (flour, sugar,salt, spices, etc.) 7:1 Dispersant/MC or HPMC ☺
- Food Oils (soy, corn, canola, cottonseed)
   5:1-8:1 Oil/MC or HPMC ☺
- •Other Liquids (corn syrup, HFCS, glycerin) 🙂
- •Hot Processing Steps © ©
- •Direct Cold Water 😁



MC & HPMC – Delayed Hydration Technique

#### Add MC or HPMC to hot system

- MC or HPMC won't hydrate in hot conditions
- Product (dips/soups/etc) will stay thin during hot HTST or UHT; thicken upon cooling
- Improves pumpability of hot filled products
- Better efficiency of heat transfer during processing – lower processing time
- Less burn on



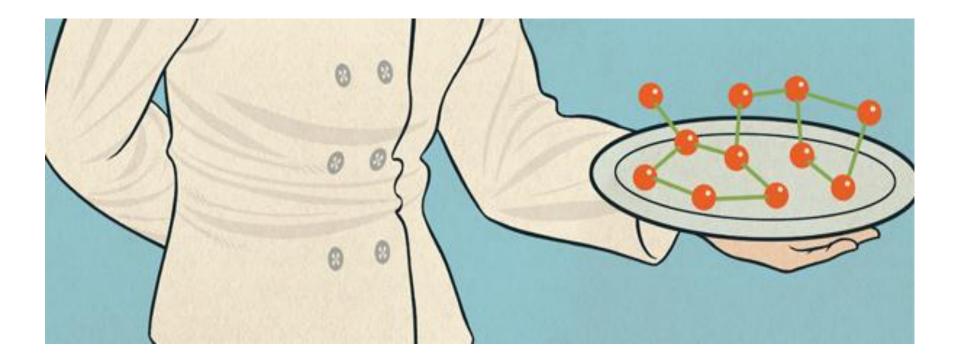




## Methylcellulose has a synergistic effect when used in combination with modified waxy maize starches

- Reduce MC and starch levels save on cost
- Fewer calories
- Increased hot cling
- Greater hot viscosity
- Less "starchy" mouthfeel in sauces

### Agenda




- Introduction to Cellulose
- Food Approved Cellulose Derivatives
  - Key Properties
  - $\circ$  Functions
  - Common Applications
- Most Widely Used Cellulose Ethers in Food Industry
  - Methylcellulose (MC)
  - Hydroxypropyl Methylcellose (HPMC)
  - Sodium Carboxymethylcellulose (CMC)





## Sodium Carboxymethylcellulose (CMC)



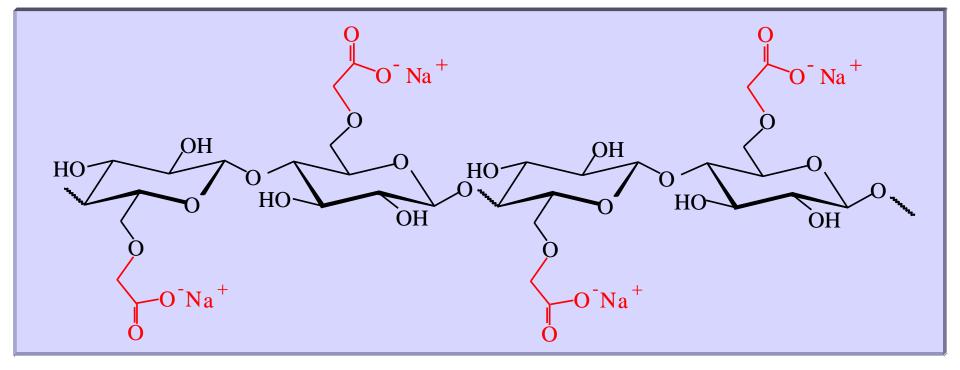


- Gluten-free and conventional breads
- Pancakes, wraps, tortillas
- Cakes and cookies: Dough and dry mixes
- Bakery creams, fruit preparations
- Glazes, coatings and toppings of bakery products
- Dairy products
- Soups, sauces, dressings, marinades
- Beverages and Wine
- Meat Products

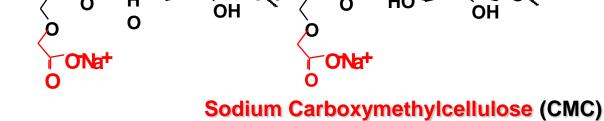


- Broad viscosity range from very low to extremely high
   30 60,000 cPs (2 %, Brookfield)
- Always available in high quality (not depending on harvesting)
- High degree of purity (> 99.5 %)
- Conformity of all standards for food and pharmaceutical applications
- Narrow specifications for all relevant product parameters
- Prepared from wood pulp  $\rightarrow$  GMO free




- Absolutely odorless and tasteless (e.g. Guar smells like beans)
- Absolutely clear and transparent solutions in water (unique in the world hydrocolloids)






- Soluble in Cold and Hot Water
- Thickener
- Increased Plasticity and Elasticity (improved machinability)
- Freeze Thaw Stability
- High Water Binding
- Emlulsifier
- Protein protection
- Compatible With Other Hydrocolloids





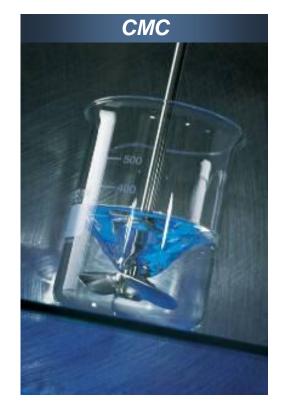
HQ



#### 66

σnat

ΟĤ


#### **CMC** - Production

- CMC products are tailor made
- Main product characteristics are controlled by: ٠
  - $\succ$  degree of polymerisation (DP)
  - $\succ$  degree of substitution  $\Rightarrow$  DS

σna+

> particle size

ĦQ







#### **DP = (Average Chain Length)**

- Is controlled by the manufacturing process raw material (cellulose) source
- Determines the viscosity development of the CMC
- Range includes grades from low to extremely high viscosity







- Higher gloss
- Smoother flow behavior, less pseudoplastic
- Clearer solutions (no fibers)
- Higher stability in low water content products
- Higher salt tolerance



#### **Powdered Grades**

- Will Clump if attempt to put directly into solution
- Requires dry blending agent

#### **Granular Grades**

- Goes into solution without clumping
- Takes longer to hydrate

#### Instantized Grades

- Very good dispersibility in cold water
- Fast viscosity build up
- No lumping

#### CMC



#### **Effect of Concentration**

• Viscosity build is not linear (doubling will increase viscosity 6-10X)

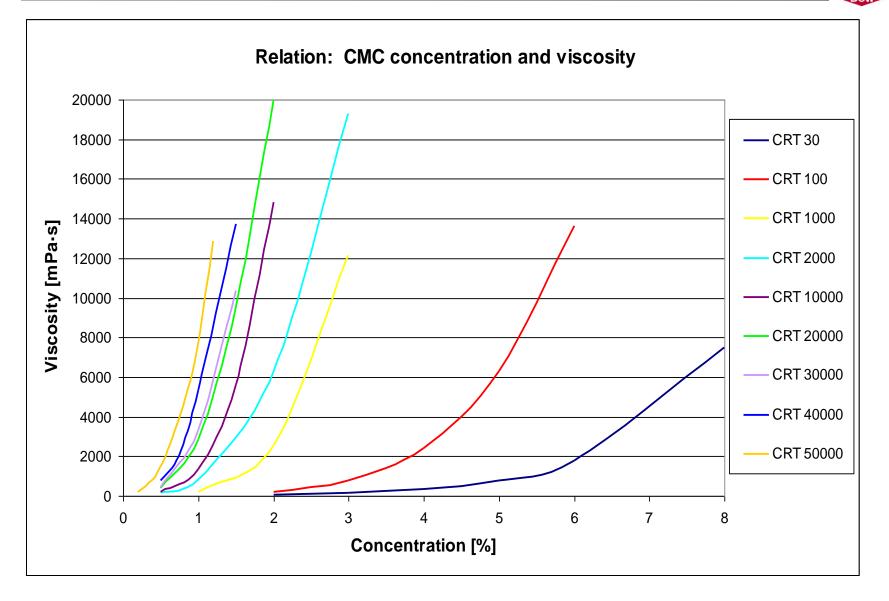
#### Effect of Heat

- With increasing temperature the viscosity of the CMC solution decreases (reversible)
- At temperatures above 90C (194 F) all CMC grades are thin flowing.

#### Effect of Shear

- $_{\odot}$   $\,$  The higher the shear, the greater the thinning effect.
- Reverses and builds back viscosity after shear is removed

#### **Effect of Salt Concentration**

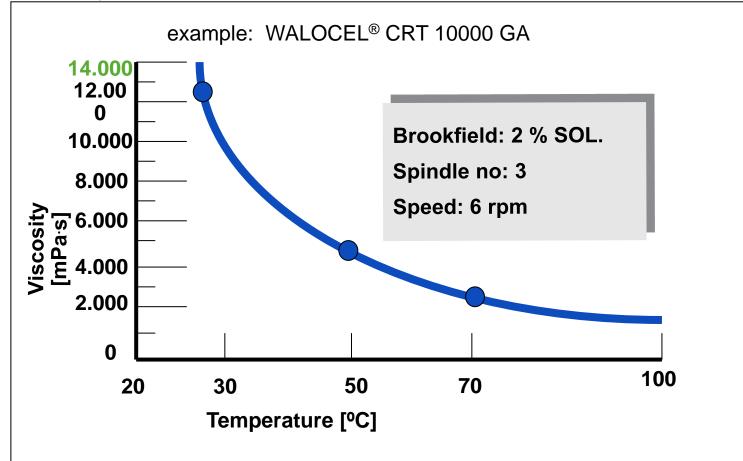

• Viscosity decreases as salt concentration increases

#### Effect of pH

- Maximum viscosity between pH 6.5 8.5
- $_{\odot}$   $\,$  Viscosity falls on each side of that range

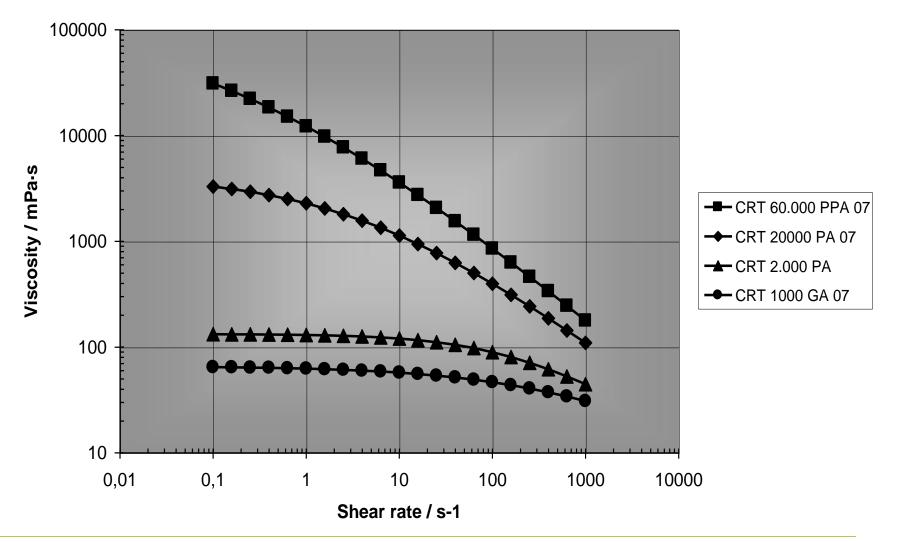
#### **CMC - Viscosity**






## **CMC - Heat Impact**




The viscosity decreases during heating process.

→ Reversible Process – viscosity increase again by decreasing the temperature!





#### Aqueous CMC-Solutions, Concentration 1.0 % by weight





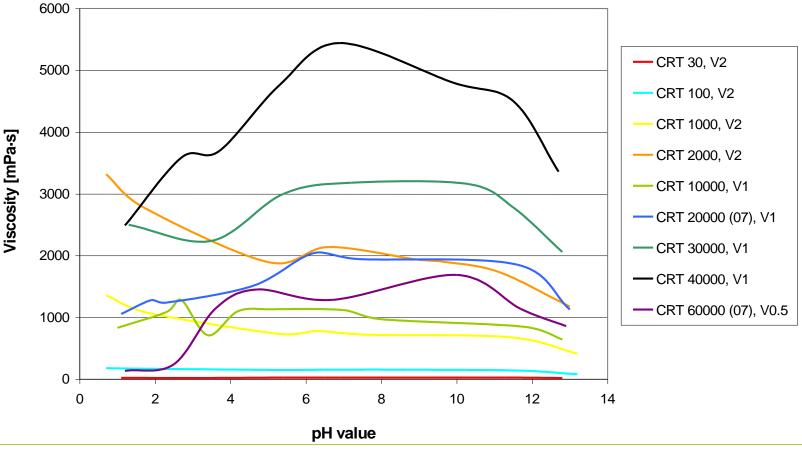
CMC

2. Salt

**General behavior in the presence of salts:** 

- Tolerance is limited
- Viscosity decreases with increasing salt levels
- Higher DS CMCs are more stable than lower

## e stable than lower


#### The moment of salt (e.g. table salt) addition is important

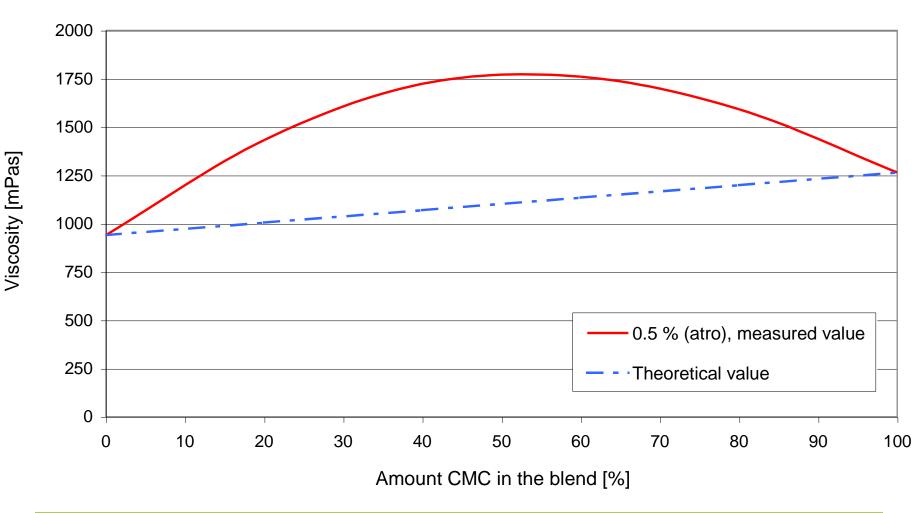
- Dissolved CMC is more stable against salts than CMC which is integrated in salt water
- The viscosity development of CMC is suppressed due to salt water

#### **CMC - Effect of pH on Viscosity**



- Maximum viscosity between pH 6.5 8.5
- Insoluble at pH  $\leq$  3 (free acid form)
- Strong viscosity decrease at pH < 6
- Slight viscosity drop at pH > 9






# Synergistic Combinations of CMC With Other Hydrocolloids



#### Synergism CMC - Guar without shear stress

Walocel CRT 60000 PA 07 - Guar 5000, concentration: 0.5 % in sum





⇒ Improved stability and functionality

#### Synergism of blends (50 : 50)

- Improved heat resistance compared to pure CMC
- Increased cold functionality compared to pure LBG
- Viscosity win (10 % at low shear)
- Good shear stability



⇒ Improved stability and functionality

"Synergism" between CMC and classic gelformers such as κ-Carrageenan, Agar, Starch ...)

⇒ Improved gel quality

⇒ Prolonged stability

⇒ No / less syneresis

⇒ Increased elasticity

#### **CMC - Overview on Food Applications**





#### Thickener, Viscosifier (e.g. beverages, soups, dressings, sauces)

 $\rightarrow$  Gives viscosity to aqueous solutions

#### Texturizer (e.g. beverages, fruitpreparation)

→ Improves body and mouthfeel, keeps consistency stable over storage time

### Improve elasticity and plasticity (e.g. extruded products, bakery products)

 $\rightarrow$  Good machinability / simplified post-processing







#### Crystallisation control (e.g. ice cream, frozen dough products)

- ightarrow Slows down the crystallisation speed, reduced crystal growth/size
- $\rightarrow$  Delayed retrogradation of amylose (anti staling agent)

#### Waterbinding (e.g. meat products, bakery products)

- $\rightarrow$  Prevents water loss, suppressed syneresis
- $\rightarrow$  Prolonged freshness

## Mouthfeel enhancer (e.g. fat-reduced products like fresh cheese preparations, soups, sauces, beverages)

 $\rightarrow$  Simulates a "fatty" mouth feel, improved creaminess







#### Protein protection (e.g. fresh cheese, acidified dairy drinks)

 $\rightarrow$  CMC protects proteins against the effects of acid and heat

#### Stabilizer (e.g. soups, dressings, sauces)

 $\rightarrow$  Keeps molecules stable and suspends particles

#### "Emulsifier" (e.g. spreadable cheese, dressings)

→ Stabilizes hydrophilic and lipophilic components, support of classic emulsifiers





#### Gelling support (e.g. fresh cheese preps, desserts)

→ CMC improves the quality of gels and supports gel-forming hydrocolloids

#### Foam stabilization

 $\rightarrow$  Fixing of foams, constant density, prolonged stand-up

#### Partial replacement of traditional additives

- ightarrow Fat and oil
- $\rightarrow$  Proteins (Proteins from milk/whey, meat, soy, wheat)
- ightarrow Sugar and lactose









#### <u>Guar Gum</u>

- Guar provides thickening, texturizing, moisture-binding and freeze-thaw stability
- 70-80% of guar gum is being used oilfield applications
  - ✓ Gum gum supply short of demand by ~25% in 2012
- Current prices roughly \$7/lb
- 1% viscosity = 3500 5000 cPs
- CMC is a suitable, cost effective replacement
  - ✓ 40,000 or 50,000 viscosity grade 1:1 replacement
  - Synergy: 20/80 & 35/65 Guar/CMC offers a 2x viscosity gain vs expected value

#### **Guar Replacement with CMC**



| Properties                 | Guar gum              | Cellulose gum     |
|----------------------------|-----------------------|-------------------|
| Cold and hot water soluble | $\checkmark$          | $\checkmark$      |
| Dissolution time           | Medium - Fast         | Fast              |
| Solution Transparency      | Cloudy                | Clear             |
| Flavor                     | Beany                 | Neutral           |
| Viscosity range            | 5000 -7000 @1%        | 30 to 50,000 @ 2% |
| Viscosity w/Shear          | Shear Thinning        | Shear Thinning    |
| Viscosity w/Heat           | Heat Thinning         | Heat Thinning     |
| Synergy                    | Xanthan               | Guar, MC          |
| pH Stability               | 5-7, loss below $3.5$ | Loss below 3.2    |
| Moisture Holding           | Good                  | Good              |
| Freeze Thaw Stability      | $\checkmark$          | $\checkmark$      |
| lonic                      | Non Ionic             | lonic             |
| Milk Interaction           | Not Known             | Protective        |



| Procedure                                   | Physical Form         |                     | <b>Recommended Preparation</b> |                                                                                                                                                       |
|---------------------------------------------|-----------------------|---------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | Granular Type<br>(GA) | Powder Type<br>(PA) | Fine Powder<br>Type (PPA)      |                                                                                                                                                       |
| Separate<br>Solution                        | +                     | _                   | _                              | High speed mixer should be<br>used and CMC grades should be<br>added slowly to aqueous<br>solution. The dissolution time is<br>about 30 – 60 minutes. |
| Dry Blend<br>Mixture                        | -                     | +                   | +                              | Premix CMC grades with other<br>powder ingredients of the<br>formulation to avoid<br>agglomeration or lumps.                                          |
| Dispersion in<br>organic solvents<br>or oil | +                     | +                   | +                              | CMC grades are dispersed in<br>organic solvents/oil. The CMC<br>dispersion is than added to<br>water while stirring                                   |

## Thanks for your kind attention ! QUESTIONS??

www.dow.com/dowwolff/en/